DyRAMO

Dyramo is a framework for exploring promising candidates (e.g., molecules) by performing multi-objective optimization with a generative model while accounting for the reliability (applicability domain) of multiple property-prediction models, thereby avoiding reward hacking.

Information

Official site https://github.com/ycu-iil/DyRAMO
Openness ★★★
License

MIT License

Core Developers

Kei Terayama ( Yokohama City University )

Tatsuya Yoshizawa (RIKEN)

Availability
  • OS: Linux (verified on AlmaLinux 9.3)
  • Python: 3.11
  • Main dependencies: ChemTSv2 1.0.3 / PHYSBO 2.0.0
  • Optional dependency: LightGBM 3.2.1 (for property prediction)
Related Papers
  • Yoshizawa, T., Ishida, S., Sato, T., Ohta, M., Honma, T., Terayama, K.
    A data-driven generative strategy to avoid reward hacking in multi-objective molecular design.
    Nature Communications 16, 2409 (2025).
    DOI: 10.1038/s41467-025-57582-3
  • Yoshizawa, T., Ishida, S., Sato, T., Ohta, M., Honma, T., Terayama, K.
    Avoiding Reward Hacking in Multi-Objective Molecular Design: A Data-Driven Generative Strategy with a Reliable Design Framework.
    ChemRxiv (Version 1, 20 June 2024).
    DOI: 10.26434/chemrxiv-2024-dh681
Related Sites